viernes, 26 de agosto de 2016

REACTANCIA 
Se denomina reactancia a la oposición ofrecida al paso de la corriente alterna por inductores (bobinas) y condensadores, se mide en ohmios y su símbolo es Ω. Junto a la resistencia eléctrica determinan la impedancia total de un componente o circuito, de tal forma que la reactancia (X) es la parte imaginaria de la impedancia (Z) y la resistencia (R) es la parte real, según la igualdad:
Cuando circula corriente alterna por alguno de los dos elementos que poseen reactancia, la energía es alternativamente almacenada y liberada en forma de campo magnético, en el caso de las bobinas, o de campo eléctrico, en el caso de los condensadores. Esto produce un adelanto o atraso entre la onda de corriente y la onda de tensión. Este desfase hace disminuir la potencia entregada a una carga resistiva conectada tras la reactancia sin consumir energía.
Si se realiza una representación vectorial de la reactancia inductiva y de la capacitiva, estos vectores se deberán dibujar en sentido opuesto y sobre el eje imaginario, ya que las impedancias se calculan como  y  respectivamente.
No obstante, las bobinas y condensadores reales presentan una resistencia asociada, que en el caso de las bobinas se considera en serie con el elemento, y en el caso de los condensadores en paralelo. En esos casos, como ya se indicó arriba, la impedancia (Z) total es la suma vectorial de la resistencia (R) y la reactancia (X).
En fórmulas:
Donde:
"j" es la unidad imaginaria
 es la reactancia en ohmios.
ω es la velocidad angular a la cual está sometido el elemento, L y C son los valores de inductancia y capacidad respectivamente.
Dependiendo del valor de la energía y la reactancia se dice que el circuito presenta:
  • Si , reactancia inductiva .
  • Si , no hay reactancia y la impedancia es puramente resistiva .
  • Si , reactancia capacitiva .

Reactancia capacitiva

La reactancia capacitiva se representa por  y su valor viene dado por la fórmula:
en la que:
 = Reactancia capacitiva en ohmios.
 = Capacidad eléctrica en faradios.
 = Frecuencia en hercios.
 = Velocidad angular.

Reactancia inductiva

en la que:
 = Reactancia inductiva en ohmios.
 = Inductancia en henrios.
 = Frecuencia en hercios.
 = Velocidad angular.

La reactancia inductiva es representada por  y su valor viene dado por:

INDUCTANCIA
inductancia al campo magnético que crea una corriente eléctrica al pasar a través de una bobina de hilo conductor enrrollado alrededor de la misma que conforma un inductor. Un inductor puede utilizarse para diferenciar señales cambiantes rápidas o lentas. Al utilizar un inductor con un condensador, la tensión del inductor alcanza su valor máximo a una frecuencia dependiente de la capacitancia y de la inductancia.

La inductancia se representa por la letra L, que en un elemento de circuito se define por:
eL = L di/dt
La inductancia depende de las características físicas del conductor y de la longitud del mismo. Si se enrolla un conductor, la inductancia aumenta. Con muchas espiras (vueltas) se tendrá más inductancia que con pocas. Si a esto añadimos un núcleo de ferrita, aumentaremos considerablemente la inductancia.
La energía almacenada en el campo magnético de un inductor se calcula según la siguiente formula: W = I² L/2...
siendo:
W = energía (julios);
I = corriente (amperios;
L = inductancia (henrios)[1].


El Cálculo de la inductancia
El Cálculo de la inductancia: La inductancia de una bobina con una sola capa bobinada al aire puede ser calculada aproximadamente con la fórmula simplificada siguiente: L (microH)=d².n²/18d+40 l

siendo:
L = inductancia (microhenrios);
d = diámetro de la bobina (pulgadas);
l = longitud de la bobina (pulgadas);

n = número de espiras o vueltas.

miércoles, 13 de julio de 2016

Explicación de bobinas

Las bobinas

Son componentes pasivos de dos terminales que generan un flujo magnético cuando se hacen circular por ellas una corriente eléctrica.
Se fabrican arrollando un hilo conductor sobre un núcleo de material ferromagnético o al aire.
Su unidad de medida es el Henrio (H) en el Sistema Internacional pero se suelen emplear los submúltiplos mH y mH.
Sus símbolos normalizados son los siguientes:
1. Bobina2. Inductancia3. Bobina con tomas fijas
4. Bobina con núcleo ferromagnético5. Bobina con núcleo de ferroxcube6. Bobina blindada
7. Bobina electroimán8. Bobina ajustable9. Bobina variable
Existen bobinas de diversos tipos según su núcleo y según tipo de arrollamiento.
Su aplicación principal es como filtro en un circuito electrónico, denominándose comúnmente, choques.

CARACTERíSTICAS

1. Permeabilidad magnética (m).- Es una característica que tiene gran influencia sobre el núcleo de las bobinas respecto del valor de la inductancia de las mismas. Los materiales ferromagnéticos son muy sensibles a los campos magnéticos y producen unos valores altos de inductancia, sin embargo otros materiales presentan menos sensibilidad a los campos magnéticos.
El factor que determina la mayor o menor sensibilidad a esos campos magnéticos se llama permeabilidad magnética.
Cuando este factor es grande el valor de la inductancia también lo es.
2. Factor de calidad (Q).- Relaciona la inductancia con el valor óhmico del hilo de la bobina. La bobina será buena si la inductancia es mayor que el valor óhmico debido al hilo de la misma.

TIPOS DE BOBINAS

1. FIJAS

Con núcleo de aire
El conductor se arrolla sobre un soporte hueco y posteriormente se retira este quedando con un aspecto parecido al de un muelle. Se utiliza en frecuencias elevadas.
Una variante de la bobina anterior se denomina solenoide y difiere en el aislamiento de las espiras y la presencia de un soporte que no necesariamente tiene que ser cilíndrico. Se utiliza cuando se precisan muchas espiras. Estas bobinas pueden tener tomas intermedias, en este caso se pueden considerar como 2 o más bobinas arrolladas sobre un mismo soporte y conectadas en serie. Igualmente se utilizan para frecuencias elevadas.
Con núcleo sólido
Poseen valores de inductancia más altos que los anteriores debido a su nivel elevado de permeabilidad magnética. El núcleo suele ser de un material ferromagnético. Los más usados son la ferrita y el ferroxcube. Cuando se manejan potencias considerables y las frecuencias que se desean eliminar son bajas se utilizan núcleos parecidos a los de los transformadores (en fuentes de alimentación sobre todo). Así nos encontraremos con las configuraciones propias de estos últimos. Las secciones de los núcleos pueden tener forma de EI, M, UI y L.
Bobina de ferritaBobina de ferrita de nido de abejaBobinas de ferrita para SMDBobinas con núcleo toroidal
Las bobinas de nido de abeja se utilizan en los circuitos sintonizadores de aparatos de radio en las gamas de onda media y larga. Gracias a la forma del bobinado se consiguen altos valores inductivos en un volumen mínimo.
Las bobinas de núcleo toroidal se caracterizan por que el flujo generado no se dispersa hacia el exterior ya que por su forma se crea un flujo magnético cerrado, dotándolas de un gran rendimiento y precisión.
La bobinas de ferrita arrolladas sobre núcleo de ferrita, normalmente cilíndricos, con aplicaciones en radio es muy interesante desde el punto de vista practico ya que, permite emplear el conjunto como antena colocándola directamente en el receptor.
Las bobinas grabadas sobre el cobre , en un circuito impreso tienen la ventaja de su mínimo coste pero son difícilmente ajustables mediante núcleo.

2. VARIABLES

También se fabrican bobinas ajustables. Normalmente la variación de inductancia se produce por desplazamiento del núcleo.
Las bobinas blindadas pueden ser variables o fijas, consisten encerrar la bobina dentro de una cubierta metálica cilíndrica o cuadrada, cuya misión es limitar el flujo electromagnético creado por la propia bobina y que puede afectar negativamente a los componentes cercanos a la misma.


Derecho de autor: https://www.electronicafacil.net/tutoriales/Las-bobinas.php